First Order Ordinary Differential Equations

Implicit Solution: F(x, y) = C where $\frac{\partial F}{\partial x} = M$ and $\frac{\partial F}{\partial y} = N$ Start with $\frac{\partial F}{\partial x} = M$ or $\frac{\partial F}{\partial y} = N$ integrate with respect to x or y, respectively, t

Start with $\frac{\partial F}{\partial x} = M$ or $\frac{\partial F}{\partial y} = N$ integrate with respect to x or y, respectively, then differentiate with respect to the other variable, and use the other equation to find the remaining function of y or x.

4. Homogeneous ODE:
$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

Let $v = \frac{y}{x}$. Then $y = x v$, $\frac{dy}{dx} = v + x\frac{dv}{dx}$, and $v + x\frac{dv}{dx} = f(v)$
Solve the separable ODE $\frac{dv}{dx} = \frac{f(v) - v}{x}$ for v , replace v with $\frac{y}{x}$, and solve for y

Second Order Ordinary Differential Equations

Methods of Undetermined Coefficients (or Annihilator Method), Laplace Transform, and Series Solutions are not included.

5. Second Order Linear ODE with Constant Coefficients: ay'' + by' + cy = 0

Characteristic Equation: $ar^2 + br + c = 0$ with solutions r_1 and r_2

$$y(x) = \begin{cases} c_1 e^{r_1 x} + c_2 e^{r_2 x}, & \text{if } r_1 \text{ and } r_2 \text{ are real-valued and unequal} \\ c_1 e^{r_1 x} + c_2 x e^{r_1 x}, & \text{if } r_1 = r_2 \\ c_1 e^{\lambda x} \cos \mu x + c_2 e^{\lambda x} \sin \mu x, & \text{if } r_1, r_2 = \lambda \pm \mu i \end{cases}$$

If $r_1, r_2 = \pm r$, then $y(x) = c_1 e^{-rx} + c_2 e^{rx}$ or $y(x) = c_1 \cosh rx + c_2 \sinh rx$ or
 $y(x) = c_1 \cosh r(x - x_0) + c_2 \sinh r(x - x_0)$ or
 $y(x) = c_1 \sinh r(x - x_0) + c_2 \sinh rx$ or $y(x) = c_1 \cosh r(x - x_0) + c_2 \cosh rx$

6. Second Order Linear Nonhomogeneous ODE: y'' + p(x)y' + q(x)y = g(x)

General Solution: $y(x) = y_h(x) + y_p(x)$ where the homogeneous solution $y_h(x) = c_1y_1(x) + c_2y_2(x)$ is the general solution to the homogeneous equation y'' + p(x)y' + q(x)y = 0, while y_1 and y_2 are two linearly independent solutions of the same homogeneous equation, and the particular solution $y_p(x)$ is a solution to the nonhomogeneous equation y'' + p(x)y' + q(x)y = g(x).

Method of Variation of Parameters: $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$ where $u'_1(x) = \frac{-y_2(x)g(x)}{W(x)}$, $u'_2(x) = \frac{y_1(x)g(x)}{W(x)}$ and the Wronskian $W(x) = y_1(x)y'_2(x) - y_2(x)y'_1(x)$.

$$y_p(x) = y_1(x) \int \frac{-y_2(x)g(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)g(x)}{W(x)} dx \text{ or}$$
$$y_p(x) = y_1(x) \int_{x_0}^x \frac{-y_2(t)g(t)}{W(t)} dt + y_2(x) \int_{x_0}^x \frac{y_1(t)g(t)}{W(t)} dt$$

7. Cauchy-Euler Equation: $x^2y'' + \alpha xy' + \beta y = 0$

Indicial Equation: $p(p-1) + \alpha p + \beta = 0$ with solutions p_1 and p_2

$$y(x) = \begin{cases} c_1 |x|^{p_1} + c_2 |x|^{p_2}, & \text{if } p_1 \text{ and } p_2 \text{ are real-valued and unequal} \\ (c_1 + c_2 \ln |x|) |x|^{p_1}, & \text{if } p_1 = p_2 \\ |x|^{\lambda} [c_1 \cos(\mu \ln |x|) + c_2 \sin(\mu \ln |x|)], & \text{if } p_1, p_2 = \lambda \pm \mu i \end{cases}$$